图片来源@视觉中国 文 | 探客Tanker,作者 | 王颖,编辑 | 蛋总 如果说“AI将彻底改变我们的生活”,应该不会有人质疑,但若细问“AI最好的应用场景是什么?”或许每个人都有不同的答案。 “我觉得人工智能最好的应用场景,毫无疑问是医疗的场景
图片来源@视觉中国
文 | 探客Tanker,作者 | 王颖,编辑 | 蛋总
如果说“AI将彻底改变我们的生活”,应该不会有人质疑,但若细问“AI最好的应用场景是什么?”或许每个人都有不同的答案。
“我觉得人工智能最好的应用场景,毫无疑问是医疗的场景。”创新工厂董事长兼CEO李开复表示,他在“中国第五届医疗健康产业投资50人论坛年度峰会”的演讲进一步阐明了投资界对医疗AI的认可。
事实上,医疗行业可以说是AI落地最早的行业之一,何出此言?
需知,医疗AI的早期探索可以追溯到上世纪70年代,1972年英国利兹大学研发出了第一款医疗人工智能系统APPHELP;1978年,北京中医医院关幼波教授研发出了我国第一个医学专家系统——关幼波肝病诊疗程序,由此打开了我国医疗AI研发的序幕。
进入21世纪时,我国已累计研发出了上百个AI专家系统,但几乎所有的技术和系统都还是“纸上谈兵”,并没有被应用在临床实践中。
最近几年,随着全球资本和技术的协同发展,加上各国政策的支持,医疗AI进入了快速发展时期——科技巨头纷纷成立“大健康事业部”布局医疗业务,创业公司扎堆涌入智能医疗设备和软件开发领域,AI在医疗领域的落地尝试愈发丰富,医学影像、辅助诊疗、健康管理、数字医疗服务等场景中的新技术、新产品正不断涌现。
IDC统计数据显示,预计到2025年,全球人工智能应用市场总值将达1270亿美元,其中医疗行业将占总规模的五分之一。
与此同时,医疗AI也吸引了国内大量资本的关注。沙利文咨询数据显示,2019到2020年,中国医疗AI领域共发生了77次融资事件,融资总额超过50亿元,其中2020年的35次融资总额已接近40亿。
无论是单轮融资数额的大幅增加,还是医疗AI三类证的陆续发放,都在表明中国医疗AI行业正在成为发展最迅猛的赛道之一。根据国家药监局公开的审批情况,截至2021年5月,我国已有12项产品通过审核拿到了最高级别的“医疗器械三类证”。
当前,在经历了论证“AI技术是否适用于医疗、医疗AI产品是否具有临床应用可行性、医疗AI是否适合规模化应用”的三个阶段后,我国医疗AI的探索正式进入了第四个阶段——获得市场准入资格后的商业化阶段。
医疗AI发展火热,随着越来越多的产品获批上市,医疗AI企业开始正面迎接市场的挑战…...
01 AI最好的应用场景
拿什么来证明医疗是AI最好的应用场景?
最直观的证据就是数据——多少AI产品获得了市场准入资格、多少医院正在使用、使用人次有多少、能达到什么效果……尤其是在医学影像和语音助手这两个领域中的AI技术,它们就如同医生的“千里眼”和“顺风耳”,其发展数据能在一定程度上回答上述问题。
数据显示,2020年中国癌症新发病例为457万例,其中肺癌发病率最高达到了82万例,其次分别是结直肠癌56万例、胃癌48万例、乳腺癌42万例……作为疾病诊断的基础步骤,医学影像分析在临床中有大量应用,可辅助医生识别病灶,了解病情严重程度。
研究数据表明,有近90%的医疗信息基于医学影像分析得出,其在医疗过程中的重要性不言而喻。而作为机器学习的重要分支,深度学习在图像分析、识别中取得了很好的应用效果,利用深度学习技术进行医学影像分析辅助诊断也成为了医疗AI落地的重点。
从国家药监局公布的三类证获批情况可以看出,肺部影像分析和糖网筛查是目前国内医疗AI企业的研究重点,12项已通过审核的产品中有6个与这两项检测相关。
2020年11月,国家药监局审核通过了全国首个肺部影像AI产品——肺结节CT影像辅助检测软件。这款软件来自一家创立自2016年的医疗AI创企——推想医疗,在论证了AI医疗技术可行、产品化可行,并在医院规模化应用后,推想医疗拿到了药监局市场准入认证,这也是非常典型的AI医疗企业的发展历程。
据「探客Tanker」了解,推想医疗已与全球20多个国家的400多家医疗机构合作。现在推想医疗已经集齐了欧盟CE、日本PMDA、美国FDA、中国NMPA四大认证,拿到了国际市场的准入资格。
在新冠肺炎爆发初期,推想医疗与疫区医院共同研发了“肺部辅助诊断系统肺炎特别版”,在武汉同济医院、北京海淀医院、重庆医科大学附属第一医院投入使用,辅助一线医护人员进行诊断、量化评估、分诊和疫情监控。
“推想医疗在中国、欧洲、日本、美国都拿到了市场准入资格,也就是说医疗AI这个概念已经经过了认证,它是一个具有临床实验安全性和有效性的医疗器械类产品。这也意味着,AI影像医疗设备可以在临床中得到广泛的使用。”推想医疗创始人兼董事长陈宽对「探客Tanker」表示。
除肺部AI之外,视网膜AI也是目前在医疗影像AI领域中走在最领先阵列的项目之一。
很多人或许不了解,视网膜是我们人体唯一能够无创、直接观测到血管和神经的组织,蕴含着丰富的生物学特性和健康信息,我们可以通过视网膜来检测到诸多慢病情况。医学研究表明,视网膜能观察到上千种病变,常见的有200余种。
2020年8月,鹰瞳Airdoc获得了国内AI眼底领域的第一张三类证。自2015年创立以来,鹰瞳科技在6年时间完成了7轮融资,融资总额超过8亿元人民币,其主营业务是AI视网膜影像识别早期检测、辅助诊断及健康风险评估方案。
事实证明,AI视网膜影像识别这个方向是正确的。2020年11月,糖网AI三类证产品被写进了国家糖尿病防控指南。这既是国家对医疗AI产品安全性、有效性的专业认定,也是推动国内医疗AI临床应用和深入发展的重大里程碑。
图 / 鹰瞳提供
据「探客Tanker」了解,目前鹰瞳Airdoc能对糖尿病、心梗等55种疾病或病变进行相应的检测或风险评估。鹰瞳Airdoc创始人、CEO张大磊表示,去年鹰瞳Airdoc的视网膜AI产品供检测了200多万人次,这其中临床科室和体检等医疗机构的贡献最大。
他预计,今年检测量会达到1000-2000万人次,随着检测量的增加,单次检测的成本会逐渐降低,这些技术也将普惠到更多人。
“视网膜是全身唯一可以无创直接观察血管和神经的部位,包含着丰富的健康信息,但往往只有资深的专科医生才能对这些疾病作出精准判断。如今,视网膜影像AI产品可以通过算法快速学习医生数十年的经验,做到快速、准确判断。”张大磊对「探客Tanker」表示。
除了影像,语音技术也是深度学习在医疗AI领域的重要探索之一。截至2020年年底,科大讯飞已在全国设立了200多个智慧医疗项目,累计进行了1.3亿次辅助诊断。NLP算法为医患沟通提供了智能交互能力,提高医生的诊疗效率的同时,也为患者提供了更便利的就诊形式。
不止如此,科大讯飞研发的“智医助理”利用语音识别、自然语言处理技术,实现了智能问诊、智能交互功能。据「探客Tanker」了解,截至2020年年底,科大讯飞的智医助理已在北京、安徽、西藏、内蒙古、青海、新疆等地的3万余家基层医疗机构上线。
此外,作为通用智能语音语言技术的提供商,思必驰也发现了AI医疗是一个“宝藏赛道”。疫情期间,思必驰研发的智能外呼机器人通过信息采集、健康教育、患者随访为医护人员极大提高了工作效率,每天处理百万级电话外呼,为疫情排查、病例分析提供了基础支持。
据「探客Tanker」了解,思必驰推出的“1+2”软硬一体化智慧医疗解决方案,目前在医疗服务的各个阶段都有应用,医生可以基于智能语音语言技术和智能人机交互技术,在门诊预问诊、门诊电子病历、手术室智能助理、医技报告语音录入等环节提高工作效率。
图 / 思必驰提供
“针对医疗中人与人、人与机器沟通的场景,智能语音语言技术能够通过对知识的重构处理让沟通更便捷,这是传统信息化系统不能解决的问题。”思必驰智慧城市应用事业部副总经理邹平对「探客Tanker」表示。
02 迈过高技术的门槛
众所周知,无论是医疗还是AI,都是门槛很高的行业,医疗AI产品要进入市场就必须面临层层考验。当前,医疗AI产品拿到了医疗器械三类证,只能证明这些技术和服务过关,而它能否和临床紧密结合才是接下来的重点,也是医疗AI企业必须迈过的难关。
AI进行医学影像分析的步骤,大致可以分为:检查病灶、分析病情、制定治疗方案。在这三个步骤中,任何一个环节都离不开与医生的紧密配合:
首先,医生上传病人的影像资料后,AI可以自动筛查出病灶,结合医生的判断最大程度的减少漏诊;
其次,AI与医生一样,都是通过大量的经验分析病人病情,经过大量数据对比后,AI可以结合以往病例帮助医生分析病情;
最后,掌握病人基本情况和病情程度后,AI可以给出相应的治疗方案,但只能为医生提供参考。
图 / 推想提供
无论何种AI模型,想要提高准确率都需要大量的数据和案例学习,而医疗AI面临的最大问题就是如何获取海量数据,并在保证数据安全的情况下训练AI。
2020年3月,国家药监局对医疗影像AI产品的审核提出了具体要求,包括训练数据不得少于2000例、来源超过3家医疗机构、人群分布平均等。
为此,很多企业选择了与医院合作的方式来获取真实数据,同时还能直接了解到医院的真实需求,毕竟对医疗行业来说,医生在临床中大量需要的技术就是刚需。
“我们数据的来源主要有三个方面,一是世界权威研究机构发布的合法开源数据;二是合作医院、专家通过项目和课题合作获得的数据;三是实际应用中产生的真实数据。”鹰瞳Airdoc首席医学官陈羽中教授告诉「探客Tanker」。
陈羽中强调,与医院合作获得的数据是产品研发中最重要的数据来源之一。另外,适应服务应用收集的真实患者数据会根据知情告知和相应条款,在被允许的情况下用来进行模型训练和产品迭代。
“医院向我们提出需要AI帮助医生在筛查、诊断、治疗阶段实现哪些功能后,我们会根据医生的需求进行研发,而不是凭空想象研发出产品后再去找落地方向。”推想医疗创始人兼董事长陈宽对「探客Tanker」说。
以上海某三甲医院为例,在医生提出具体需求的情况下,推想医疗为其提供了CT影像辅助检测软件。医生和AI同时对数千名患者的影像数据进行分析。结果表明,结节大小在10-30mm时,医生和AI都能准确判断,结节大小在3-6mm时,AI的表现要优于医生,结节大小在0-3mm时,这种趋势更加明显。
AI的优势在于,其识别精度要远超人类,且医生在大量阅片时会产生疲劳,也会影响对病情的判断。有了AI影像技术的辅助后,可大大地节约医生的时间及精力,提高医生的问诊效率和质量。
近日,谷歌将Google Health团队的部分人员并入Fitbit,同时把剩余员工分为三个团队,其中一个就专注于医学影像领域的创新,使用算法筛查糖尿病视网膜病变,这也是Google Health目前最重要的研发方向之一,而这件事进一步说明了视网膜影像AI方向的重要性及发展潜力。
不过,一直以来,我国对眼科疾病的重视程度不高,眼科医生长期处于缺乏状态,通过视网膜检测全身疾病的应用更是少之又少。鹰瞳Airdoc的产品首先关注疾病造成的眼部问题,譬如糖尿病的典型并发症——糖尿病视网膜病变。
2019年,爱康集团与鹰瞳Airdoc达成战略合作后,对数百万患者进行了基于视网膜AI的健康状况评估。其中,AI眼底照相疾病风险评估包括4大类30个各类各级异常,36.8%的受检者有2种以上的异常结果。
有受检者在拿到相关报告后,针对异常结果去医院做了精细的检查,发现果然在对应的部位出现了病变,这为受检者的后续治疗赢得了理想的时间。
图 / 百万体检人群健康蓝皮书
事实上,医疗AI产品想要真正普及,只能通过不断创新为医生创造更多价值,保证整个行业的探索朝着有效的方向前进。除了医院和用户本身的需求,更重要的是在产品落地过程中能与临床有紧密的结合,且不必在不同的医院做不同的适配,有一个放之四海皆准的标准。
而现阶段,企业要做的就是服务好医院和医生,让AI最大程度地辅助医生提高诊疗效率、放大诊疗效果并复制诊疗模式。
03 医疗AI是个“慢”生意
话说回来,医疗AI的训练过程就是AI向人类专家学习,以深度学习为核心的AI技术可以通过大数据和算法,去发现一些人类可能尚未关注或掌握的规律,这也是AI适用于医疗行业发展的重要原因之一。
医疗AI在迅猛发展的同时,也在进行“大浪淘沙”——这两年中有不下百家企业被逐步淘汰。现阶段,对医疗AI企业来说,拿到三类证书只意味着拿到了一张“进入市场的入场券”,之后如何得到医院和患者的认可?如何让医疗AI产品普及?如何实现企业的正向盈利?
不难想象,医疗AI还有很长的一段路要走。
从“医疗AI第一股”科亚医疗在今年三月提交的招股书可看出,其2020年的营收仅有70.9万元,而2019年这一数字为116.7万元,毛利则从89.6万元降低到了50万元,年度亏损更是从539.5万元增长到了48739.4万元。这也凸显了医疗AI产品实现商业化的难度之大。
今年4月20日,科大讯飞公布的2020年年报显示,2020年科大讯飞全年总营收为130.25亿元,净利润为13.64亿元,其主要业务包括教育、医疗、消费者和智慧城市四大领域。其中,智慧医疗业务2020年总营收3.13亿元,占营收总比重2.4%,同比增长69.25%。
这也意味着,即便是如科大讯飞这样的AI语音巨头,其智慧医疗业务的营收也相当于“刚刚起步”,在总收入中占比还很小。
那么,医疗AI的商业化之路为何如此难走?
据「探客Tanker」了解,此前为了能快速检验产品的适用性并打开市场,很多企业选择了免费入驻的方式进入医院,但事实上这些医疗产品仅被个别医院小范围适用是很难迅速铺开的,一味地靠免费使用去拓展市场,除了增加运营负担外,企业也无法找到正确的盈利路线。
“只有既懂AI又懂临床的团队才能让整个行业发展起来,建立这样的团队本身就是有挑战的,我们的核心竞争力就是有一个懂AI、懂临床,有研发能力、组织能力的团队。”陈宽说。目前,他们的研发团队已有上百人。
总的来说,医疗AI是一个全新的行业,无论是医疗机构还是患者,对医疗AI都有一个认识、接受的过程,这就意味着医疗AI是一个“不得不慢慢来”的行业。
鹰瞳AirdocCEO张大磊认为,医疗AI是个“慢”生意,可能要坐多年冷板凳。他曾说,“把一个产品做到极致可能需要10年甚至20年,让市场接受可能还需要20年,让它真的在临床中普遍应用可能还需要更久,我只希望在有生之年能看到这件事初有成效,我们这一代人在这一代技术上做到极致,或许再往下做会更容易些。”
作为在互联网环境中成长起来的一代,我们对于医疗AI的接受程度相对较高,随着我们这一代人的父母逐步迈进老年阶段,整个社会对医疗AI的需求会大幅增加。
「探客Tanker」关注到,这几年无论是医院领导、行业专家还是患者,乃至全社会,对医疗AI产品都逐渐从陌生、怀疑到熟悉、接受,甚至在日常应用中已经离不开了。
现在头部的AI公司都在规模化地商业落地过程中,我们坚信,人工智能将会改变世界,但这一过程需要大量的应用不断尝试。如今,医疗领域的新技术开始拓展更多新的可能,随着研发力度的增加、政策的支持以及人们意识的提高,未来医疗AI也许将成为随处可见的基础应用。
黎明到来前,天色最黑暗。残酷的市场竞争与极高的技术门槛,将快速地把那些企图吃一波AI红利就走的投机者淘汰掉。能够历经艰辛熬过来的,或许正是那些一直脚踏实地打磨产品、灵活适应市场需求的人,医疗AI行业的第一抹曙光将照在他们的脸上。
声明:本文内容来源自网络,文字、图片等素材版权属于原作者,平台转载素材出于传递更多信息,文章内容仅供参考与学习,切勿作为商业目的使用。如果侵害了您的合法权益,请您及时与我们联系,我们会在第一时间进行处理!我们尊重版权,也致力于保护版权,站搜网感谢您的分享!